328 research outputs found

    Near-Earth Supernova Explosions: Evidence, Implications, and Opportunities

    Get PDF
    There is now solid experimental evidence of at least one supernova explosion within 100 pc of Earth within the last few million years, from measurements of the short-lived isotope ⁶⁰Fe in widespread deep-ocean samples, as well as in the lunar regolith and cosmic rays. This is the first established example of a specific dated astrophysical event outside the Solar System having a measurable impact on the Earth, offering new probes of stellar evolution, nuclear astrophysics, the astrophysics of the solar neighborhood, cosmic-ray sources and acceleration, multi-messenger astronomy, and astrobiology. Interdisciplinary connections reach broadly to include heliophysics, geology, and evolutionary biology. Objectives for the future include pinning down the nature and location of the established near-Earth supernova explosions, seeking evidence for others, and searching for other short-lived isotopes such as ÂČ⁶Al and ÂČ⁎⁎Pu. The unique information provided by geological and lunar detections of radioactive ⁶⁰Fe to assess nearby supernova explosions make now a compelling time for the astronomy community to advocate for supporting multi-disciplinary, cross-cutting research programs

    Radioactive Iron Rain: Transporting 60^{60}Fe in Supernova Dust to the Ocean Floor

    Full text link
    Several searches have found evidence of 60^{60}Fe deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying 60^{60}Fe from a SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere (MLT) is the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of 46−6+1046^{+10}_{-6} pc for a 8−10 M⊙8-10 \ M_{\odot} SN progenitor. This is consistent with a SN occurring within the Tuc-Hor stellar group ∌\sim2.8 Myr ago with SN material arriving on Earth ∌\sim2.2 Myr ago. We note that the SN dust retains directional information to within 1∘1^{\circ} through its arrival in the inner Solar System, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable 60^{60}Fe differences.Comment: 18 pages, 8 figures. Comments welcom

    Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes

    Get PDF
    We consider the production and deposition on Earth of isotopes with half-lives in the range 105^{5} to 108^{8} years that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGBs) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the 60^{60}Fe and 26^{26}Al signatures, and extend these estimates to include 244^{244}Pu and 53^{53}Mn. We discuss interpretations of the 60^{60}Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ~2.2 Myr ago, showing that (i) the 60^{60}Fe yield rules out the TNSN and KN interpretations, (ii) the 60^{60}Fe signals highly constrain a SAGB interpretation but do not completely them rule out, (iii) are consistent with a CCSN origin, and (iv) are highly compatible with an ECSN interpretation. Future measurements could resolve the radioisotope deposition over time, and we use the Sedov blast wave solution to illustrate possible time-resolved profiles. Measuring such profiles would independently probe the blast properties including distance, and would provide additional constraints the nature of the explosion.Comment: 38 pages, 6 figures. Comments welcom
    • 

    corecore